409 research outputs found

    Modeling Convective Core Overshoot and Diffusion in Procyon Constrained by Asteroseismic Data

    Get PDF
    We compare evolved stellar models, which match Procyons mass and position in the HR diagram, to current ground-based asteroseismic observations. Diffusion of helium and metals along with two conventional core overshoot descriptions and the Kuhfuss nonlocal theory of convection are considered. We establish that one of the two published asteroseismic data reductions for Procyon, which mainly differ in their identification of even versus odd l-values, is a significantly more probable and self-consistent match to our models than the other. The most probable models according to our Bayesian analysis have evolved to just short of turnoff, still retaining a hydrogen convective core. Our most probable models include Y and Z diffusion and have conventional core overshoot between 0.9 and 1.5 pressure scale heights, which increases the outer radius of the convective core by between 22% to 28%, respectively. We discuss the significance of this comparatively higher than expected core overshoot amount in terms of internal mixing during evolution. The parameters of our most probable models are similar regardless of whether adiabatic or nonadiabatic model p-mode frequencies are compared to the observations, although, the Bayesian probabilities are greater when the nonadiabatic model frequencies are used. All the most probable models (with or without core overshoot, adiabatic or nonadiabatic model frequencies, diffusion or no diffusion, including priors for the observed HRD location and mass or not) have masses that are within one sigma of the observed mass 1.497+/-0.037 Msun

    The Pulsation Properties of Procyon A

    Get PDF
    A grid of stellar evolution models for Procyon A has been calculated. These models include the best physics available to us (including the latest opacities and equation of state) and are based on the revised astrometric mass of Girard et al (1996). Models were calculated with helium diffusion and with the combined effects of helium and heavy element diffusion. Oscillation frequencies for l=0,1,2 and 3 p-modes and the characteristic period spacing for the g-modes were calculated for these models. We find that g-modes are sensitive to model parameters which effect the structure of the core, such as convective core overshoot, the heavy element abundance and the evolutionary state (main sequence or shell hydrogen burning) of Procyon A. The p-modes are relatively insensitive to the details of the physics used to model Procyon A, and only depend on the evolutionary state of Procyon A. Hence, observations of p-mode frequencies on Procyon A will serve as a robust test of stellar evolution models.Comment: 4 pages, to appear in ApJ

    The theoretical calculation of the Rossby number and the "non-local" convective overturn time for pre-main sequence and early post-main sequence stars

    Get PDF
    This paper provides estimates of convective turnover time scales for Sun-like stars in the pre-main sequence and early post-main sequence phases of evolution, based on up-to-date physical input for the stellar models. In this first study, all models have solar abundances, which is typical of the stars in the Galactic disk where most of the available data have been collected. A new feature of these models is the inclusion of rotation in the evolutionary sequences, thus making it possible to derive theoretically the Rossby number for each star along its evolutionary track, based on its calculated rotation rate and its local convective turnover time near the base of the convection zone. Global turnover times are also calculated for the complete convection zone. This information should make possible a new class of observational tests of stellar theory which were previously impossible with semi-empirical models, particularly in the study of stellar activity and in research related to angular momentum transfer in stellar interiors during the course of stellar evolution

    Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model

    Full text link
    Main sequence, solar-like stars (M < 1.5 Msun) have outer convective envelopes that are sufficiently thick to affect significantly their overall structure. The radii of these stars, in particular, are sensitive to the details of inefficient, super-adiabatic convection occurring in their outermost layers. The standard treatment of convection in stellar evolution models, based on the Mixing-Length Theory (MLT), provides only a very approximate description of convection in the super-adiabatic regime. Moreover, it contains a free parameter, alpha_MLT, whose standard calibration is based on the Sun, and is routinely applied to other stars ignoring the differences in their global parameters (e.g., effective temperature, gravity, chemical composition) and previous evolutionary history. In this paper, we present a calibration of alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD) simulations of convection. The value of alpha_MLT is adjusted to match the specific entropy in the deep, adiabatic layers of the convective envelope to the corresponding value obtained from the 3D RHD simulations, as a function of the position of the star in the (log g, log T_eff) plane and its chemical composition. We have constructed a model of the present-day Sun using such entropy-based calibration. We find that its past luminosity evolution is not affected by the entropy calibration. The predicted solar radius, however, exceeds that of the standard model during the past several billion years, resulting in a lower surface temperature. This illustrative calculation also demonstrates the viability of the entropy approach for calibrating the radii of other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical Journa
    corecore